Hyperplanes of DW ( 5 , K ) with K a perfect field of characteristic 2

نویسنده

  • Bart De Bruyn
چکیده

Let K be a perfect field of characteristic 2. In this paper, we classify all hyperplanes of the symplectic dual polar space DW(5,K) that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to 5+N , where N is the number of equivalence classes of the following equivalence relation R on the set {λ ∈ K |X2 + λX + 1 is irreducible in K[X]}: (λ1, λ2) ∈ R whenever there exists an automorphism σ of K and an a ∈K such that (λσ2 ) −1 = λ−1 1 + a2 + a.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperplanes of DW ( 5 , K ) with K a perfect field of characteristic 2 Bart

Let K be a perfect field of characteristic 2. In this paper, we classify all hyperplanes of the symplectic dual polar space DW (5,K) that arise from its Grassmann embedding. We show that the number of isomorphism classes of such hyperplanes is equal to 5 + N , where N is the number of equivalence classes of the following equivalence relation R on the set {λ ∈ K |X2 + λX + 1 is irreducible in K[...

متن کامل

The hyperplanes of DW(5,F) arising from the Grassmann embedding

The hyperplanes of the symplectic dual polar space DW (5,F) that arise from the Grassmann embedding have been classified in [B.N. Cooperstein and B. De Bruyn. Points and hyperplanes of the universal embedding space of the dual polar space DW (5, q), q odd. Michigan Math. J., 58:195–212, 2009.] in case F is a finite field of odd characteristic, and in [B. De Bruyn. Hyperplanes of DW (5,K) with K...

متن کامل

Hyperplanes of DW(5, K) containing a quad

We prove that every hyperplane of the symplectic dual polar space DW (5, K) that contains a quad is either classical or the extension of a non-classical ovoid of a quad of DW (5, K).

متن کامل

A note on symplectic polar spaces over non-perfect fields of characteristic 2

Given a field K of characteristic 2 and an integer n ≥ 2, let W (2n − 1, K) be the symplectic polar space defined in PG(2n − 1, K) by a nondegenerate alternating form of V (2n, K) and let Q(2n, K) be the quadric of PG(2n, K) associated to a non-singular quadratic form of Witt index n. In the literature it is often claimed that W (2n − 1, K) ∼= Q(2n, K). This is true when K is perfect, but false...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009